Это три типа механизмов пропусков в данных — и от понимания того, какой из них у вас, зависит, как правильно обрабатывать пропущенные значения.
🔍MCAR (Missing Completely at Random) Пропуски появляются совершенно случайно — не зависят ни от наблюдаемых, ни от ненаблюдаемых переменных.
📌 Пример: датчик случайно перестал записывать температуру из-за сбоя связи. ✅ Что делать: удаление строк или простая импутация — допустимо, модель почти не искажается.
🔍MAR (Missing At Random) Пропуски зависят от других наблюдаемых признаков, но не от самого недостающего значения.
📌 Пример: доход клиента не указан, но это чаще бывает у молодых пользователей — и возраст у нас есть. ✅ Что делать: множественная импутация (Multiple Imputation), модели, учитывающие другие признаки, работают хорошо.
🔍MNAR (Missing Not At Random) Пропуски зависят от самого значения, которое пропущено. То есть в данных есть систематическая причина, скрытая внутри пропуска.
📌 Пример: люди с высоким доходом не указывают его в анкете — именно потому, что он высокий. ✅ Что делать: здесь простые методы не помогут. Часто требуется: — Моделировать механизм пропуска явно. — Включать индикаторы пропусков как отдельные признаки. — Использовать экспертные знания или специализированные байесовские подходы.
Это три типа механизмов пропусков в данных — и от понимания того, какой из них у вас, зависит, как правильно обрабатывать пропущенные значения.
🔍MCAR (Missing Completely at Random) Пропуски появляются совершенно случайно — не зависят ни от наблюдаемых, ни от ненаблюдаемых переменных.
📌 Пример: датчик случайно перестал записывать температуру из-за сбоя связи. ✅ Что делать: удаление строк или простая импутация — допустимо, модель почти не искажается.
🔍MAR (Missing At Random) Пропуски зависят от других наблюдаемых признаков, но не от самого недостающего значения.
📌 Пример: доход клиента не указан, но это чаще бывает у молодых пользователей — и возраст у нас есть. ✅ Что делать: множественная импутация (Multiple Imputation), модели, учитывающие другие признаки, работают хорошо.
🔍MNAR (Missing Not At Random) Пропуски зависят от самого значения, которое пропущено. То есть в данных есть систематическая причина, скрытая внутри пропуска.
📌 Пример: люди с высоким доходом не указывают его в анкете — именно потому, что он высокий. ✅ Что делать: здесь простые методы не помогут. Часто требуется: — Моделировать механизм пропуска явно. — Включать индикаторы пропусков как отдельные признаки. — Использовать экспертные знания или специализированные байесовские подходы.
I have no inside knowledge of a potential stock listing of the popular anti-Whatsapp messaging app, Telegram. But I know this much, judging by most people I talk to, especially crypto investors, if Telegram ever went public, people would gobble it up. I know I would. I’m waiting for it. So is Sergei Sergienko, who claims he owns $800,000 of Telegram’s pre-initial coin offering (ICO) tokens. “If Telegram does a SPAC IPO, there would be demand for this issue. It would probably outstrip the interest we saw during the ICO. Why? Because as of right now Telegram looks like a liberal application that can accept anyone - right after WhatsApp and others have turn on the censorship,” he says.
The STAR Market, as is implied by the name, is heavily geared toward smaller innovative tech companies, in particular those engaged in strategically important fields, such as biopharmaceuticals, 5G technology, semiconductors, and new energy. The STAR Market currently has 340 listed securities. The STAR Market is seen as important for China’s high-tech and emerging industries, providing a space for smaller companies to raise capital in China. This is especially significant for technology companies that may be viewed with suspicion on overseas stock exchanges.
Библиотека собеса по Data Science | вопросы с собеседований from ca